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In 1989 F. Schipp and W. R. Wade (Appl. Anal. 34, 203–218) proved for func-
tions in L(I2) log+L(I2) (I2 is the unit square) that the dyadic difference of the
dyadic integral dn(If) converges to f a.e. in the Pringsheim sense (that is,
min(n1, n2)Q., n=(n1, n2) ¥ P2). We prove that this result cannot be sharpened.
Namely, we prove that for all measurable functions d: [0,+.)Q [0,+.),
limtQ. d(t)=0 we have a function f ¥ L log+Ld(L) such as dn(If) does not
converge to f a.e. (in the Pringsheim sense). © 2002 Elsevier Science (USA)

In the classical case for the unit square I2 :=[0, 1)×[0, 1), if g belongs
to L log+L(I2) then

g(x, y)= lim
h, kQ 0

1
hk

F
x+h

x
F
y+k

y
g(s, t) ds dt

a.e. on I2 (see Jessen et al. [JMZ]). The dyadic analogue of this is proved
by Schipp and Wade [SW].

In this paper we give the dyadic analogue of Saks [Sak]; i.e., we
prove for all d: [0,+.)Q [0,+.) measurable function with property
limtQ. d(t)=0 the existence of a function f ¥ L log+Ld(L) (i.e.,
|f(x)| log+(|f(x)|) d(|f(x)|) ¥ L1(I2)) such as the integral of f on I with
respect to both variable is equal to zero and d(n1, n2)(If) does not converge
to f a.e. as min(n2, n2)Q..



Let N denote the set of positive integers, P :=N 2 {0}, and I :=[0, 1).
For any set E let E2 the cartesian product E×E. Thus P2 is the set of
integral lattice points in the first quadrant and I2 is the unit square. Let
E1=E and fix j=1 or 2. Denote the j -dimensional Lebesgue measure (m)
of any set E … I j by m(E). Denote the Lp(I j) norm of any function f by
||f||p (1 [ p [.).

Denote the dyadic expansion of n ¥ P and x ¥ I by n=;.

j=0 nj2
j and

x=;.

j=0 xj2
−j−1 (in the case of x=k/2m k, m ¥ P choose the expansion

which terminates in zeros). ni, xi are the ith coordinates of n, x, respec-
tively. Set ei :=1/2 i+1 ¥ I, the ith coordinate of ei is 1, the rest are zeros
(i ¥ P). Define the dyadic addition+ as

x+y=C
.

j=0
|xj−yj | 2−j−1.

The sets In(x) :={y ¥ I : y0=x0, ..., yn−1=xn−1} for x ¥ I , In :=In(0) for
n ¥N and I0(x) :=I are the dyadic intervals of I. The set of the dyadic
intervals on I is denoted by I :={In(x): x ¥ I, n ¥ P}. Denote by An the s
algebra generated by the sets In(x) (x ¥ I) and En the conditional expecta-
tion operator with respect to An (n ¥ P) (f ¥ L1(I)).

For t=(t1, t2) ¥ I2, b=(b1, b2) ¥ P2 set the two-dimensional dyadic
rectangle, i.e., two-dimensional dyadic interval

I2b(t) :=Ib1 (t
1)×Ib2 (t

2).

We also use the notation I2b(t) :=Ib(t
1)×Ib(t2) for b ¥ P, t=(t1, t2). For

n=(n1, n2) ¥ P2 denote by En=E(n1, n2) the two-dimensional expectation
operator with respect to the s algebra An=A(n1, n2) generated by the two-
dimensional rectangles In1 (x

1)×In2 (x
2) (x=(x1, x2) ¥ I2). For n ¥ P denote

by |n| the greatest integer for which 2 |n| is not greater than n. That is,
2 |n| [ n < 2 |n|+1. The Rademacher functions on I are defined as

rn(x) :=(−1)xn (x ¥ I, n ¥ P).

The Walsh–Paley system (on I) is defined as the set of the Walsh–Paley
functions:

wn(x) :=D
.

k=0
(rk(x))nk=(−1);

|n|
k=0 nkxk (x ¥ I, n ¥ P).

That is, w :=(wn, n ¥ P). (For details see Fine [F].) For each function f
on I set

(dnf)(t) :=C
n−1

j=0
2 j−1(f(t)−f(t+ej))
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for t ¥ I, n ¥N. Then f is said to be dyadically differentiable at a point
t ¥ I if (dnf)(t) converges, as nQ., to some finite number, f[1](t) [BW].
Butzer and Wagner [BW] showed that every Walsh function dyadically
differentiable with w[1]k (t)=kwk(t) for all t ¥ I and k ¥ P.

Let e1j1 :=(ej1 , 0), e
2
j2 :=(0, ej2 ) ¥ I

2. For functions of two variables the
dyadic difference operator

(dnf)(x) := C
j1 < n1
j2 < n2

2 j1+j2 −2(f(x)−f(x+e1j1 )−f(x+e
2
j2 )+f(x+e

1
j1+e

2
j2 ))

(n=(n1, n2) ¥N2) is defined by Schipp and Wade [SW]. The function
f: I2Q R is said to be dyadically differentiable at a point x ¥ I2 if (dnf)(x)
converges, as min(n1, n2)Q., to some finite number, f[1](x) [SW]. Schipp
and Wade proved for wk=wk1 ×wk2 that w[1]k =k1k2wk (k=(k1, k2) ¥ P2).

LetW be the function on I whose Walsh–Fourier coefficients satisfy

Ŵ(k)=˛0 if k=0
1/k if k ¥N.

The dyadic integral of f: IQ C , f ¥ L1 is defined to be If :=f fW
[SWS], where f represents dyadic convolution, i.e.,

If(t)=F
I
f(t+s) W(s) dm(s) (t ¥ I).

Schipp [Sch] obtained the differentiation theorem, the following funda-
mental theorem of dyadic calculus: if f ¥ L1, f̂(0)=0 then (If)[1]=f a.e.
on I. Butzer and Engels defined [BE] the two-dimensional dyadic integral
of f ¥ L1(I2) by If=f f (W×W) where f denotes the two-dimensional
dyadic convolution. Schipp and Wade [SW] proved that if f ¥ L log+L(I2)
and f̂(n1, n2)=0 for n1n2=0 then

dn(If)Q f as min{n1, n2}Q.

a.e. on I2. We prove that this result cannot be sharpened. Namely, we
prove

Theorem 1. For all measurable function d: [0,+.)Q [0,+.),
limtQ. d(t)=0 we have a function f ¥ L log+Ld(L) (this means that

F
I2
|f(x)| log+(|f(x)|) d(f(x)) dm(x) <.)
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with the property

f̂(n1, n2)=0 (n1n2=0, n ¥ P2)

such as dn(If) does not converge to f a.e. (in the Pringsheim sense). More-
over, supn ¥ P

2 |dn(If)|=+. almost everywhere on I2.

In order to prove Theorem 1 we need several lemmas. It is easy to have
[SW]

dn(If)(t)=F
I2
f(y1, y2) dn1W(t

1−y1) dn2W(t
2−y2) dm(y1, y2)

(t=(t1, t2) ¥ I2, n ¥ P2),

where

dnW(x)=D2n(x)−1+C
.

i=1
wi2n(x) C

2n−1

s=0

sws(x)
i2n+s

=: D2n(x)−1+Vn(x).

It is also easy to see that

Vn(x)= C
.

i=1

wi2n(x)
i
1 C
2n−1

s=0
sws(x)2 2−n− C

.

i=1
wi2n(x) C

2n−1

s=0
sws(x) 1

1
i2n
−
1

i2n+s
2

=: Zn(x)−Un(x)

for x ¥ I and n ¥ P. The first lemma to be proved

Lemma 2. Let 3 [ n ¥ P and 0 ] x ¥ In+3. Then

C
.

i=1

wi2n(x)
i

\
1
2
,

dnW(x) \ 2n−1.

Proof of Lemma 2.

|Un(x)| [ C
.

i=1
C
2n−1

s=0
s : 1
i2n
−
1

i2n+s
:

[ C
.

i=1

1
i24n

C
2n−1

s=0
s2 [ C

.

i=1

2n

3i2

=2n
p2

18
.
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Let u :=2nx (mod 1), that is, (u0=xn, u1=xn+1, ...). Since 0 ] u ¥ I3 then
there exists a unique 3 [ t ¥ P for which u ¥ It 0It+1. The Dirichlet kernel
[SWS] is

Dj(u)=wj(u) 1 C
t−1

i=0
ji2 i−jt2 t2

and consequently, |Dj(u)| [ 2 t. By Abel’s transform,

C
.

i=1

wi2n(x)
i
=C

.

i=1

wi(u)
i

=C
.

i=1
(Di+1(u)−1) 1

1
i
−
1
i+1
2

= C
2t−1

i=1
i
1

i(i+1)
+ C
i \ 2t
(Di+1(u)−1)

1
i(i+1)

\ C
2t−1

i=1
i
1

i(i+1)
−(2 t+1) C

i \ 2t

1
i(i+1)

= C
2t−1

i=1

1
i+1
−
2 t+1
2 t

\
1
2
+
1
3
+· · ·+

1
8
−1−

1
23

\
1
2
.

On the other hand,

C
2n−1

s=0
sws(x)=

2n(2n−1)
2

.

This gives

dnW(x) \ 2n−1+2−n
1
2
2n−1
2
2n−
p2

18
2n

=2n(1+1/4−p2/18)−5/4 \ 2n7/10−5/4 \ 2n−1 (n \ 3).

This completes the proof of Lemma 2. L

Define a subset of the set of the two-dimensional intervals I×I,

In, a(x) :={In+j(x1)×In+a−j(x2) : j=0, 1, ..., a}

for x ¥ I2, a, n ¥ P. It is easy to have

3 In, a(x)=In+a(x1)×In+a(x2), m 13 In, a(x)2=2−2n−2a,

F ¥In, a(x) implies m(F)=2−2n−a. Next we prove
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Lemma 3. m(1 In, a(x))=(1+a/2) 2−2n−a.

Proof. Denote (for the sake of this proof, only)

mk :=m 10
k

j=0
(In+j(x1)×In+a−j(x2))2

for k=0, 1, ..., a. Then m0=2−2n−a and for k > 0 we have

mk=mk−1+m(In+k(x1)×In+a−k(x2))

−m 10
k−1

j=0
(In+j(x1)×In+a−j(x2)) 5 (In+k(x1)×In+a−k(x2))2

=mk−1+
1
22n+a

−m 10
k−1

j=0
(In+k(x1)×In+a−j(x2))2

=mk−1+
1
22n+a

−m(In+k(x1)×In+a−k+1(x2))

=mk−1+
1
22n+a

−
1

22n+a+1
=mk−1+

1
22n+a+1

.

This gives

m 10 In, a(x)2=m 10
a

j=0
(In+j(x1)×In+a−j(x2))2=ma

=m0+a
1

22n+a+1
=
1
22n+a

+a
1

22n+a+1
=
1+a/2
22n+a

.

This completes the proof of Lemma 3. L

Let b ¥ PP, b0=2, a ¥ P, and define the sets Jkb, a, W
k
b, a recursively:

J0b, a :={0,
1
4 ,
1
2 ,
3
4}×{0,

1
4 ,
1
2 ,
3
4},

W0b, a := 0
x ¥ J0b, a

0 Ib0, a(x).

Suppose that the sets J jb, a, W
j
b, a are defined for j < k. Then decompose

I20 0
k−1

j=0
W jb, a

as the disjoint union of dyadic squares of the form I2bk (x). Take from each
dyadic rectangle an element to represent so that the coordinates of which
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with indices greater than bk−1 are equal to zero. The set of x’s corre-
sponding to these squares is Jkb, a. That is,

I200
k−1

j=0
W jb, a= 0

x ¥ Jkb, a

I2bk (x)

(x1bk=x
1
bk+1=·· ·=0, x

2
bk=x

2
bk+1=·· ·=0). Then, set

Wkb, a := 0
x ¥ Jkb, a

0 Ibk, a(x).

Let bk > 4(bk−1+a+1) (k ¥N). Then sequence b satisfies the equality
bk \ bk−1+a (the two-dimensional dyadic rectangle with the smallest
measure in W jb, a for j < k is of the form Ibk−1+a(x

1)×Ibk−1+a(x
2)).

This gives the a.e. equality

I2=0
.

k=0
Wkb, a=0

.

k=0
0
x ¥ Jkb, a

0 Ibk, a(x).

Let 10 < d ¥N be an absolute constant and let a > 4d. Set

Gb, a, 0 :=G0 :=0
.

k=0
0
x ¥ Jkb, a

0 Ibk+d+3, a−2d(x)=: 0
.

k=0
Wkb, a, p .

It is not difficult to prove that

m(G0)=
m(1 Ibk+d+3, a−2d(0))
m(1 Ibk, a(0))

=
(1+(a−2d)/2) 2−2bk −6−a

(1+a/2) 2−2bk −a
=
1
26
11− d

1+a/2
2 \ 1
27
.

Set for y ¥ I2

fb, a(y) :=(−1)y
1
0+y

2
0 2a C

.

k=0
C

x ¥ Jkb, a

(−1)y
1
bk −1

+y2bk −1 1I2bk+a(x)(y),

where 1B denotes the characteristic function of any set B … I2.

Lemma 4. For all b, a we have >I2 |fb, a | log+ |fb, a | [ 2.
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Proof.

F
I2
|fb, a(y)| log+(|fb, a(y)|) dm(y)

=2a log(2a) C
.

k=0
C

x ¥ Jkb, a

m(1I2bk+a(x)(y)=1)

=2a log(2a) C
.

k=0
C

x ¥ Jkb, a

m 13 Ibk, a(x)2

=2a log(2a) C
.

k=0
C

x ¥ Jkb, a

m(1 Ibk, a(y))
2a(1+a/2)

[
log(2a)
1+a/2

m(I2) [ 2.

The proof of Lemma 4 is complete. L

Since

F
I
fb, a(y1, y2) dm(y1)=F

I
fb, a(y1, y2) dm(y2)=0,

then for all n=(n1, n2) ¥ P2, n1n2=0 we have f̂b, a(n)=0. Consequently,
for all t ¥ I2 and n ¥ P2 we have

dn(Ifb, a)(t)=F
I2
fb, a(y) dn1W(t

1−y1) dn2W(t
2−y2) dm(y)

=F
I2
fb, a(y)((D2n1+Vn1 )(t

1−y1))((D2n2+Vn2 )(t
2−y2)) dm(y)

=: Tnfb, a(t).

The following lemma is the very base of the proof of Theorem 1. In the
sequel we prove some lemmas which will be necessary in order to prove this
basic lemma. The procedure consists of three main steps which will be
indicated as cases k̃ > k, k̃ < k, and k̃=k.

Lemma 5. Let t ¥ G0. Then there exists an n ¥ P2 (the exact form of n
see below) for which

|Tnfb, a(t)| \ 2−4.

Let t ¥ G0. Then there exists a unique k ¥ P, x ¥ Jkb, a for which

t ¥0 Ibk+d+3, a−2d(x).

8 G. GÁT



Hence also exists a j ¥ {d, d+1, ..., a−d} such that

t ¥ Ibk+3+j(x
1)×Ibk+3+a−j(x

2).

Let n=(n1, n2)=(bk+j, bk+a−j). For y ¥ I2bk+a(x) we have t−y ¥
In1+3×In2+3. By Lemma 2 it follows

:F
I2bk
(x)
fb, a(y) dn1W(t

1−y1) dn2W(t
2−y2) dm(y) :

=:F
I2bk+a

(x)
fb, a(y) dn1W(t

1−y1) dn2W(t
2−y2) dm(y) :

=:F
I2bk+a

(x)
2a(−1)y

1
0+y

2
0+y

1
bk −1

+y2bk −1 dn1W(t
1−y1) dn2W(t

2−y2) dm(y) :

\ :F
I2bk+a

(x)
2a2n1+n2 −2dm(y) :

=2−2bk −2a+a+n1+n2 −2 \ 1
4 .

In order to prove Lemma 5 we give an upper bound for the integral

:F
I20I2bk+a

(x)
fb, a(y) dn1W(t

1−y1) dn2W(t
2−y2) dm(y) :

for t ¥ Ibk+3+j(x
1)×Ibk+3+a−j(x

2), where j ¥ {d, d+1, ..., a−d}.

Lemma 6. The case k̃ < k. We prove

F
2 k̃ < kW

k̃
b, a

fb, a(y)(D2n1(t1−y1)+Vn1 (t
1−y1))

×(D2n2(t2−y2)+Vn2 (t
2−y2)) dm(y)=0.

Proof. Let y ¥ W k̃b, a for some k̃ < k. Then there exists a unique x̃ ¥ J k̃b, a
for which y ¥ I2bk̃+a(x̃) (otherwise fb, a(y)=0). Then for any i1 ¥N

F
Ibk̃+a(x̃

1)
fb, a(y) wi12n1(t

1−y1) dm(y1)

=(−1) x̃
1
0+x̃

2
0+x̃

1
bk −1

+x̃2bk −1 2a F
Ibk̃+a(x̃

1)
wi12n1(t

1−y1) dm(y1)=0

DYADIC DIFFERENCE OF DYADIC INTEGRALS 9



since bk̃+a < bk̃+1 [ bk < n1. Thus,

F
Ibk̃+a(x̃

1)
fb, a(y) Vn1 (t

1−y1) dm(y1)=0.

Similarly,

F
Ibk̃+a(x̃

2)
fb, a(y) Vn2 (t

2−y2) dm(y2)=0.

Since y ¥ I2bk̃+a(x̃) and t ¥ I2bk (x), then t−y ¨ I2bk and consequently, either
t1−y1 ¨ Ibk or t2−y2 ¨ Ibk . That is, we have

D2n1(t1−y1) ·D2n2(t2−y2)=0.

This and the above implies

F
I2bk̃+a

(x̃)
fb, a(y)(D2n1(t1−y1)+Vn1 (t

1−y1))

×(D2n2(t2−y2)+Vn2 (t
2−y2)) dm(y)=0.

That is, we have

F
2 k̃ < kW

k̃
b, a

fb, a(y)(D2n1(t1−y1)+Vn1 (t
1−y1))

×(D2n2(t2−y2)+Vn2 (t
2−y2)) dm(y)=0.

This completes the proof of Lemma 6. L

Lemma 7. The case k̃ > k,

:F
2 k̃ > kW

k̃
b, a

fb, a(y)(D2n1(t1−y1)+Vn1 (t
1−y1))

×(D2n2(t2−y2)+Vn2 (t
2−y2)) dm(y) : [ 2−5.

Proof. Let k̃ > k, x̃ ¥ J k̃b, a. Then

x̃=(x̃1, x̃2), (x̃1+ebk̃ −1, x̃
2), (x̃1, x̃2+ebk̃ −1), (x̃

1+ebk̃ −1, x̃
2+ebk̃ −1) ¥ J

k̃
b, a.

10 G. GÁT



Since n=(bk+j, bk+a−j) [ (bk+a, bk+a) < (bk̃−1, bk̃−1) then denoting
(x̃+eebk̃ −1)=(x̃

1+e1ebk̃ −1, x̃
2+e2ebk̃ −1) as e1, e2=0, 1 we have

C
e1, e2=0, 1

F
I2bk̃+a

(x̃+eebk̃ −1)
fb, a(y) 1D2n1(t1−y1)+ C

2bk̃ −n1 −2

i1=1
C
2n1 −1

s=0

wi12n1+s(t
1−y1) s

i12n1+s
2

×(D2n2(t2−y2)+Vn2 (t
2−y2)) dm(y)

=(−1) x̃
1
0+x̃

2
0+x̃

1
bk −1

+x̃2bk −1 2a C
e1, e2=0, 1

(−1) e1+e22a

×1D2n1(t1−x̃1)+ C
2bk̃ −n1 −2

i1=1
C
2n1 −1

s=0

wi12n1+s(t
1−x̃1) s

i12n1+s
2

×F
I2bk̃+a

(x̃+eebk̃ −1)
(D2n2(t2−y2)+Vn2 (t

2−y2)) dm(y)=0,

because

C
e1, e2=0, 1

(−1) e1+e2 F
I2bk̃+a

(x̃+eebk̃ −1)
(D2n2(t2−y2)+Vn2 (t

2−y2)) dm(y)=0

for both e2=0 and e2=1 since D2n2(t2−y2)+Vn2 (t
2−y2) does not depend

on e1. Similarly,

C
e1, e2=0, 1

F
I2bk̃+a

(x̃+eebk̃ −1)
fb, a(y)(D2n1(t1−y1)+Vn1 (t

1−y1))

×1D2n2(t2−y2)+ C
2bk̃ −n2 −2

i2=1
C
2n2 −1

s=0

wi22n2+s(t
2−y2) s

i22n2+s
2 dm(y)=0.

On the other hand,

F
I2bk̃+a

(x̃)
fb, a(y)1 C

.

i1=2
bk̃ −n1+a

C
2n1 −1

s=0

wi12n1+s(t
1−y1) s

i12n1+s
2

×(D2n2(t2−y2)+Vn2 (t
2−y2)) dm(y)

=(−1) x̃
1
0+x̃

2
0+x̃

1
bk −1

+x̃2bk −1 2a C
.

i1=2
bk̃ −n1+a

C
2n1 −1

s=0

ws(t1−x̃1) s
i12n1+s

×F
I2bk̃+a

(x̃)
wi12n1(t

1−y1)(D2n2(t2−y2)+Vn2 (t
2−y2)) dm(y1) dm(y2)=0,
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because

F
Ibk̃+a(x̃

1)
wi12n1(t

1−y1) dm(y1)=0

for i1 \ 2bk̃ −n1+a. Similarly, we have

F
I2bk̃+a

(x̃)
fb, a(y)(D2n1(t1−y1)+Vn1 (t

1−y1))

×1 C
.

i2=2
bk̃ −n2+a

C
2n2 −1

s=0

wi22n2+s(t
2−y2) s

i22n2+s
2 dm(y)=0.

Consequently, in the case of k̃ > k,

F
1k̃ > k W

k̃
b, a

fb, a(y)(D2n1(t1−y1)+Vn1 (t
1−y1))(1)

×(D2n2(t2−y2)+Vn2 (t
2−y2)) dm(y)

= C
.

k̃=k+1
C

x̃ ¥ Jk̃b, a

2a(−1) x̃
1
0+x̃

2
0+x̃

1
bk −1

+x̃2bk −1

×F
I2bk̃+a

(x̃)

5 C
2bk̃ −n1+a

i1=2
bk̃ −n1 −2

C
2n1 −1

s=0

wi12n1+s(t
1−y1) s

i12n1+s
6

×5 C
2bk̃ −n2+a

i2=2
bk̃ −n2 −2

C
2n2 −1

s=0

wi22n2+s(t
2−y2) s

i22n2+s
6 dm(y).

Let n, i ¥N. Then

C
2n−1

s=0

: wss
i2n+s

−
wss
i2n
: [ C

2n−1

s=0

s2

i24n
[
2n

i2
.

It is easy to have ;L
i=l

1
2i2 [ 1/l. By Abel’s transform it follows

C
L

i=l

wi2n

i
1 C
2n−1

s=0
wss2−n2

= C
2n−1

s=0
wss2−n 5C

L

i=l

1C
i

j=l
wj2n

1
i(i+1)
2+C

L

j=l
wj2n

1
L+1
6 .
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Since ||; i
j=l wj2n ||1=||Di+1(2

n · )−Dl(2n · )||1 [ log2(L+1)+log2(l) [ 4 log(L)
(for L \ 1) and

>C
L

i=l

wi2n

i
1 C
2n−1

s=0
wss2−n2>

1
[ 2n+2 log(L)/l

then for the absolute value of (1) we get the following upper bound (apply
that bk̃ > 4bk+4a+4 for k̃ > k)

: C
.

k̃=k+1
C

x̃ ¥ Jk̃b, a

2a F
I2bk̃+a

(x̃)

5 C
2bk̃ −n1+a

i1=2
bk̃ −n1 −2

C
2n1 −1

s=0

wi12n1+s(t
1−y1) s

i12n1+s
6

×5 C
2bk̃ −n2+a

i2=2
bk̃ −n2 −2

C
2n2 −1

s=0

wi22n2+s(t
2−y2) s

i22n2+s
6 : dm(y)

[ C
.

k̃=k+1
2a F

I2
: C
2bk̃ −n1+a

i1=2
bk̃ −n1 −2

C
2n1 −1

s=0

wi12n1+s(t
1−y1) s

i12n1+s

× C
2bk̃ −n2+a

i2=2
bk̃ −n2 −2

C
2n2 −1

s=0

wi22n2+s(t
2−y2) s

i22n2+s
: dm(y)

[ C
.

k̃=k+1
2a 5 2

n1

2bk̃ −n1 −2
+2n1+2

log(2bk̃ −n1+a)
2bk̃ −n1 −2
6

×5 2
n2

2bk̃ −n2 −2
+2n2+2

log(2bk̃ −n2+a)
2bk̃ −n2 −2
6

[ C
.

k̃=k+1
2a 5 2

bk+a

2bk̃ −bk −a
+2bk+a

log(2bk̃)
2bk̃ −bk −a
6

×5 2
bk+a

2bk̃ −bk −a
+2bk+a

log(2bk̃)
2bk̃ −bk −a
6

[ C
.

k̃=k+1
2a 5 1
2bk̃/2
+2bk+a

bk̃
23bk̃/4
62

[ C
.

k̃=k+1
2a 5 bk̃
2bk̃/2
62 < 2−5

(recall that sequence b is strictly monotone increasing, and b1 >
4(b0+a+1) > 172). This completes the proof of Lemma 7. L

Next, we discuss the case k̃=k. Let x ¥ Jkb, a and

t ¥ Ibk+3+j(x
1)×Ibk+3+a−j(x

2),

DYADIC DIFFERENCE OF DYADIC INTEGRALS 13



where j ¥ {d, d+1, ..., a−d} and let n1 :=2bk+j. Set

Wk, 1b, a := 0
x ¥ Jkb, a

Ibk (x
1).

Lemma 8. We prove

:F
W
k, 1
b, a 0Ibk+a(x

1)
fb, a(y) Un1 (t

1−y1) dm(y1) : [ 130.

Proof. In order to save space denote n1 by simply n—only in the proof
of this lemma (note that in the paper n=(n1, n2) ¥ P2 generally).

Un(x)=C
.

i=1
wi2n(x) C

2n−1

s=0
sws(x) 1

1
i2n
−
1

i2n+s
2

=C
.

i=1

wi2n(x)
i2n

C
2n−1

s=0

s2ws(x)
i2n+s

.

For s=s0+s121+·· ·+sn−12n−1 let l :=1−s0+(1−s1) 21+·· ·+
(1−sn−1) 2n−1. That is, s+l=2n−1.

w2n−1−l=ws=r
s0
0 ...r

sn−1
n−1=r0r

1−s0
0 ...rn−1r

1−sn−1
n−1 =r0 ...rn−1wl=w2n−1wl.

Then

C
2n−1

s=0

s2ws
i2n+s

= C
2n−1

l=0

(2n−1−l)2 w2n−1−l
(i+1) 2n−1−l

=w2n−1 1 (2n−1)2 C
2n−1

l=0

wl

(i+1) 2n−1−l

−2(2n−1) C
2n−1

l=0

lwl
(i+1) 2n−1−l

+ C
2n−1

l=0

l2wl
(i+1) 2n−1−l

2 .

Denote by f[u] the uth dyadic derivative of the function f (u ¥P, f[0] :=f),

C
2n−1

l=0

wl

(i+1) 2n−1−l
= C
2n−1

l=0
wl

1
(i+1) 2n−1

1−
l

(i+1) 2n−1

= C
2n−1

l=0
wl

1
(i+1) 2n−1

C
.

u=0

5 l
(i+1) 2n−1

6u

14 G. GÁT



=
1

(i+1) 2n−1
C
.

u=0

5 1
(i+1) 2n−1

6u C
2n−1

l=0
luwl

=
1

(i+1) 2n−1
C
.

u=0

5 1
(i+1) 2n−1

6u D[u]2n .

In a similar way we also have

C
2n−1

l=0

lwl
(i+1) 2n−1−l

= C
2n−1

l=0
wl

l
(i+1) 2n−1

1−
l

(i+1) 2n−1

= C
2n−1

l=0
wl C

.

u=1

5 l
(i+1) 2n−1

6u

=C
.

u=1

5 1
(i+1) 2n−1

6u D[u]2n

and

C
2n−1

l=0

l2wl
(i+1) 2n−1−l

=((i+1) 2n−1) C
.

u=2

5 1
(i+1) 2n−1

6u D[u]2n .

That is,

C
2n−1

s=0

s2ws
i2n+s

=w2n−1 1
(2n−1)2

(i+1) 2n−1
C
.

u=0

5 1
(i+1) 2n−1

6u D[u]2n

−2(2n−1) C
.

u=1

5 1
(i+1) 2n−1

6u D[u]2n

+((i+1) 2n−1) C
.

u=2

5 1
(i+1) 2n−1

6u D[u]2n 2

=w2n−1 1
(2n−1)2

(i+1) 2n−1
D2n+1

(2n−1)2

((i+1) 2n−1)2
−
2(2n−1)
(i+1) 2n−1

2D[1]2n

+1 (2
n−1)2

(i+1) 2n−1
+(i+1) 2n−1−2(2n−1)2

× C
.

u=2

5 1
(i+1) 2n−1

6u D[u]2n 2.

We integrate fb, a(y) on

0
x̃ ¥ Jkb, a
x̃1 ] x1

Ibk+a(x̃
1)
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because Wk, 1b, a 0Ibk (x
1)=1x̃ ¥ Jkb, a

x̃1 ] x1
Ibk (x̃

1) but if y1 ¥ Ibk (x
1)0Ibk+a(x

1) then

fb, a(y)=0 for all x ¥ Jkb, a.
t1 ¥ In(x1) (remark that in this proof (only, not elsewhere) n1=n) which

gives D2n(t1−y1)=0. Discuss D[u]2n . By induction we have

D[u]2n (z)= C
n−1

s1=0
· · · C

n−1

su=0
2 s1+· · ·+su −u C

e1, ..., eu ¥ {0, 1}
(−1) e1+· · ·+eu

×D2n(z+e1es1+·· ·+euesu )

= C
s ¥ {0, 1, ..., n−1}u

2 s · 1−u C
e ¥ {0, 1}u

(−1) e · 1 D2n(z+ees).

For a given s ¥ {0, 1, ..., n−1}u and e ¥ {0, 1}u there exists at most one
x̃1 ¥ I for which there exists an x̃=(x̃1, x̃2) ¥ Jkb, a for which
t1−x̃1+ees ¥ Ibk , that is, for this s and e we have

F
Ibk (x̃)
|fb, a(y)| D2n(t1−x̃1+ees) dm(y1)

=F
Ibk+a(x̃)

|fb, a(y)| D2n(t1−x̃1+ees) dm(y1) [ 2a2n2−bk −a=2n−bk.

Consequently,

:F
W
k, 1
b, a 0Ibk+a(x

1)
fb, a(y) Un(t1−y1) dm(y1) :

[ C
.

i=1

:F
W
k, 1
b, a 0Ibk+a(x

1)
fb, a(y)

wi2n(t1−y1)
i2n

w2n−1(t1−y1)

×51 (2n−1)2

((i+1) 2n−1)2
−
2(2n−1)
(i+1) 2n−1

2

× C
n−1

s=0
(D2n(t1−y1)−D2n(t1−y1+es)) 2 s−1

+1 (2
n−1)2

(i+1) 2n−1
+(i+1) 2n−1−2(2n−1)2

× C
.

u=2

1
((i+1) 2n−1)u

D[u]2n (t
1−y1)6 dm(y1) :
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[ C
.

i=1
C
n−1

s1=0

5F
W
k, 1
b, a 0Ibk+a(x

1)
|fb, a(y)| D2n(t1−y1+es1 ) dm(y

1)6

×
2 s1 −1

i2n
1 (2n−1)2

((i+1) 2n−1)2
+
2(2n−1)
(i+1) 2n−1

2

+C
.

i=1
C
.

u=2

1
i2n
1 (2n−1)2
(i+1) 2n−1

+(i+1) 2n+1+2(2n−1)2

×
1

((i+1) 2n−1)u
C

s ¥ {0, 1, ..., n−1}u
C

e ¥ {0, 1}u
2 s · 1−u

×F
W
k, 1
b, a 0Ibk+a(x

1)
|fb, a(y)| D2n(t1−y1+ees) dm(y1)=: (3.1)+(3.2).

If there is no si (or s1 in the case of (3.1)) for which si < bk, then t1 ¥ Ibk (x
1),

y1 ¥ Ibk (x̃
1) (x̃1 ] x1) implies t1−y1 ¨ Ibk , and consequently, t1−y1+ees

¨ Ibk . Which gives D2n(t1−y1+ees)=0. That is, if we take account the
addends in (3.1) and (3.2) which differ from zero, we have to suppose that
there is an i ¥ {1, ..., u} for which si < bk. Since

C
bk −1

s1=0
C
n−1

s2=0
· · · C

n−1

su=0
C

e ¥ {0, 1}u
2 s · 1−u [ 2bk2 (u−1) n,

then

C
{s ¥ {0, 1, ..., n−1}u : ,si < bk}

C
e ¥ {0, 1}u

2 s · 1−u [ u2bk+(u−1) n.

This gives a bound for (3.1) as

C
.

i=1

1
i2n
1 (2n−1)2

((i+1) 2n−1)2
+
2(2n−1)
(i+1) 2n−1

2 2bk 1
2bk+a

2a2n [
p2

2
.

For (3.2) we get the following upper bound

C
.

i=1
C
.

u=2

1
i2n
1 (2n−1)2
(i+1) 2n−1

+(i+1) 2n+1+2(2n−1)2

×
1

((i+1) 2n−1)u
u2bk+(u−1) n

1
2bk+a

2a2n

=C
.

i=1

1
i2n
1 (2n−1)2
(i+1) 2n−1

+(i+1) 2n+1+2(2n−1)2 C
.

u=2

u2nu

((i+1) 2n−1)u
.
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Let x :=2n/((i+1) 2n−1)=1/(i+1−1/2n) < 1 (i \ 1). Then

C
.

u=0
xu=

1
1−x

, C
.

u=1
uxu=

x
(1−x)2

.

Since n \ 2 then

C
.

u=2
uxu=

x
(1−x)2

−x=x 1 1
(1−x)2

−12

=x2
2−x
(1−x)2

[ x2
2−

1
1+1−1/2

11− 1
1+1−1/2
22
=12x2.

Since x2 [ 1/i2 then for (3.2) we have the following upper bound

12 C
.

i=1

1
i32n
1 (2n−1)2
(i+1) 2n−1

+(i+1) 2n+1+2(2n−1)2

[ 12 C
.

i=1

1
i3
((1−1/2n)2+i+1+1+2) [ 12p2.

That is,

:F
W
k, 1
b, a 0Ibk+a(x

1)
fb, a(y)(Un1 (t

1−y1) dm(y1) : [ 13p2 [ 130.

This completes the proof of Lemma 8. L

Let x ¥ Jkb, a and t ¥ Ibk+3+j(x
1)×Ibk+3+a−j(x

2) again, where j ¥ {d, d+1, ...,
a−d} and let n1 :=2bk+j. Recall that

Wk, 1b, a= 0
x ¥ Jkb, a

Ibk (x
1).

Lemma 9. We prove

:F
W
k, 1
b, a 0Ibk+a(x

1)
fb, a(y) C

2a−j

i=1

wi2n1(t1−y1)
i2n1

C
2n1 −1

s=0
sws(t1−y1) dm(y1) : [ (a−j).

Proof. For z ¥ I we have

C
2n1 −1

s=0
sws(z)= C

2n1 −1

s=0
2 s−1(D2n1(z)−D2n1(z+es)).
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t1 ¥ In1 (x
1), y1 ¥ Ibk (x̃

1) for some x̃ ¥ Jkb, a, x̃
1 ] x1 (otherwise fb, a(y)=0),

consequently t1−y1 ¨ Ibk which gives D2n1(t1−y1)=0. We also have that
D2n1(t1−y1+es) can be different from zero only in the case when s < bk and
for all s < bk there exists at most one x̃1 ¥ I for which there exists an
x̃=(x̃1, x̃2) ¥ Jkb, a for which t1−y1+es ¥ Ibk (x̃

1). If the function fb, a is not
the constant zero function on the set Ibk (x̃

1) then it differs from zero on
Ibk+a(x̃

1) … Ibk (x̃
1). That is,

:F
W
k, 1
b, a 0Ibk+a(x

1)
fb, a(y) C

2a−j

i=1

wi2n1(t1−y1)
i2n1

C
2n1 −1

s=0
sws(t1−y1) dm(y1) :

[ C
bk −1

s=0
2 s−1 C

2a−j

i=1

1
i
2a
1
2bk+a

[ (a−j).

L

With the same conditions as in Lemma 8 and 9 we prove

Corollary 10.

:F
W
k, 1
b, a 0Ibk+a(x

1)
fb, a(y)(D2n(t1−y1)+Vn(t1−y1)) dm(y1) :

[ 131(a−j).

Proof. D2n1(t1−y1)=0 for y1 ¥ Ibk (x̃
1), x̃1 ] x1. Lemmas 8 and 9 with

F
Ibk+a(x̃

1)
wi2n1(t1−y1) dm(y1)=0

(for i \ 2a−j) complete the proof of Corollary 10. L

Set

Wk, 2b, a := 0
x ¥ Jkb, a

Ibk (x
2).

Recall that n=(n1, n2)=(bk+j, bk+a−j) ¥ P2.

Corollary 11.

:F
1{I2bk (x̃): x̃ ¥ J

k
b, a, x̃

1
] x1, x̃2 ] x2}

fb, a(y)

×(D2n1(t1−y1)+Vn1 (t
1−y1))×(D2n2(t2−y2)+Vn2 (t

2−y2)) dm(y) :

[
(131a)2

2a
.
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Lemma 12.

:F
I2bk+a

(x)
fb, a(y)(D2n1(t1−y1)+Vn1 (t

1−y1))

×(D2n2(t1−y1)+Vn2 (t
1−y1)) dm(y)

−F
[Wk, 1b, a 0Ibk+a(x

1)]×Ibk+a(x
2)
fb, a(y)(D2n1(t1−y1)+Vn1 (t

1−y1))

×(D2n2(t1−y1)+Vn2 (t
1−y1)) dm(y)

−F
Ibk+a(x

1)×[Wk, 2b, a 0Ibk+a(x
2)]
fb, a(y)(D2n1(t1−y1)+Vn1 (t

1−y1))

×(D2n2(t1−y1)+Vn2 (t
1−y1)) dm(y) :

\ 2−3.

Proof. We give a lower bound for

: 1
2 F
I2bk+a

(x)
fb, a(y)(D2n1(t1−y1)+Vn1 (t

1−y1))(4)

×(D2n2(t1−y1)+Vn2 (t
1−y1)) dm(y)

−F
[Wk, 1b, a 0Ibk+a(x

1)]×Ibk+a(x
2)
fb, a(y)(D2n1(t1−y1)+Vn1 (t

1−y1))

×(D2n2(t1−y1)+Vn2 (t
1−y1)) dm(y) :.

Since for t2 ¥ In2+3(x
2), y2 ¥ Ibk+a(x

2) then t2−y2 ¥ In2+3. This by Lemma 2
gives

(D2n2(t1−y1)+Vn2 (t
1−y1)) \ 2n2 −1.

That is, (4) is not less than

:1
2
F
Ibk+a(x

1)
fb, a(y)(D2n1(t1−y1)+Vn1 (t

1−y1)) dm(y1)

−F
W
k, 1
b, a 0Ibk+a(x

1)
fb, a(y)(D2n1(t1−y1)+Vn1 (t

1−y1)) dm(y1) : 2n2 −1 1
2bk+a
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\ :1
2
2a+n1(−1)x

1
0+x

2
0+x

1
bk −1

+x2bk −1 2−bk −a

+
1
2
F
Ibk+a(x

1)
fb, a(y) C

2a−j−1

i=1

wi2n1(t1−y1)
i2n1

C
2n1 −1

s=0
sws(t1−y1) dm(y1)

−F
W
k, 1
b, a 0Ibk+a(x

1)
fb, a(y) C

2a−j−1

i=1

wi2n1(t1−y1)
i2n1

C
2n1 −1

s=0
sws(t1−y1) dm(y1)

−F
W
k, 1
b, a 0Ibk+a(x

1)
fb, a(y) Un1 (t

1−y1) dm(y1) : 2−j−1.

For y1 ¥ Ibk+a(x
1) we have ;2n1 −1

s=0 sws(t
1−y1)=2n1(2n1−1)/2. For y1 ¥

Wk, 1b, a 0Ibk+a(x
1) we have

C
2n1 −1

s=0
sws(t1−y1)=− C

n1 −1

s=0
2 s−1D2n1(t1−y1+es).

As earlier, D2n1(t1−y1+es) can be different from zero only in the case when
s < bk and for a given s there exists at most one x̃1 ¥ I for which there exists
a x̃=(x̃1, x̃2) ¥ Jkb, a, x̃

1 ] x1 for which D2n1(t1−y1+es) ] 0 (y1 ¥ Ibk (x̃
1)). If

y1 ¥ Ibk+a(x̃
1) for some x̃ ¥ Jkb, a then y1bk=·· ·=y

1
bk+a−1=0 which gives

wi2n1(t1−y1)=wi2n1(t1) (i=1, ..., 2a−j−1). That is,

1
2
F
Ibk+a(x

1)
fb, a(y) C

2a−j−1

i=1

wi2n1(t1−y1)
i2n1

C
2n1 −1

s=0
sws(t1−y1) dm(y1)

(5)

−F
W
k, 1
b, a 0Ibk+a(x

1)
fb, a(y) C

2a−j−1

i=1

wi2n1(t1−y1)
i2n1

C
2n1 −1

s=0
sws(t1−y1) dm(y1)

= C
2a−j−1

i=1

wi2n1(t1)
i2n1
11
2
F
Ibk+a(x

1)
2a(−1)x

1
0+x

2
0+x

1
bk −1

+x2bk −1
2n1(2n1−1)

2
dm(y1)

+ C
bk −1

s=0
2 s−1 F

Ibk+a(x
1+es)
fb, a(y) D2n1(t1−y1+es) dm(y1)2 .

By Lemma 2 or more exactly, by the method with which we proved Lemma
2 we have the following lower bound for the absolute value of (5)

1
2
1
2n1
11
4
2n1(2n1−1)
2bk

−2bk
2a2n1

2bk+a
2 \ 2 j−4−1

2
.
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The sign of (5) is (−1)x
1
0+x

2
0+x

1
bk −1

+x2bk −1. Consequently,

(4) \ 512 2 j+2 j−4− 12− :F
W
k, 1
b, a 0Ibk+a(x

1)
fb, a(y) Un1 (t

1−y1) dm(y1) :6 2−j−1

\ (2 j−1−130) 2−j−1 \ 1
8 .

(In the last inequality we used Lemma 8 and j \ d \ 10.) Applying the
above written in the proof of this lemma for the other coordinate (consi-
dering that the signs of the two terms—the absolute value of the first one is
(4)—are the same) we complete the proof. L

At last with the help of Corollary 11 and Lemmas 12, 6, and 7 the proof
of Lemma 5 is complete. L

Next we turn our attention to the construction of the counterexample
function. Define bn, an, dn ¥ P in the following way b0=a0=d0 :=5d. For
n ¥N let

bn > C
n−1

k=0
bk2ak

dn :=5sup 3 t ¥ R : d(t) >
1
2nbn
46+1

(if {t: d(t) > 1/(2nbn)}=”, then dn :=5d)

2an > dn, 2bn, 2n, C
.

n=0

bn

an
<..

Define the function F: I×I2Q R as

F(u, x)=C
.

n=0
rn(u) bnfn(x) :=C

.

n=0
rn(u) bnfb, an (x).

Note that in the definition of fb, an (x), b0 :=2 and bk > 4(bk−1+an+1) for
all k ¥N.

At first we prove

Lemma 13. >I2 |F(u, x)| log+(|F(u, x)|) d(|F(u, x)|) dm(x) [ 16.

Proof. Set

Hn :={x ¥ I2 : fn(x) ] 0, fn+j(x)=0 (j ¥N)} (n ¥ P)
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and H−1 :={x ¥ I2 : fj(x)=0 (j ¥ P)}. The definiton of fb, an , (an) gives

m({x ¥ I2 : fn+j(x)=0 (j ¥N)})

\ 1−m 10
k > n
{x ¥ I2 : fk(x) ] 0}2 \ 1− C

k > n
m({x ¥ I2 : fk(x) ] 0})

\ 1− C
k > n

1
2ak(ak/2+1)

\ 1− C
k > n

1
2k
.

This follows 1.

n=−1 {x ¥ I
2 : fn+j(x)=0 (j ¥N)}=I2 (neglecting a set of

measure zero). Thus, 1.

n=−1 Hn=I
2 (neglecting a set of measure zero).

Corresponding to this argument if x ¥Hn (n ¥ P) then

|F(u, x)| [ C
n−1

k=0
bk2ak+bn2an

[ bn+bn2an [ 2bn2an=|bn2fb, an (x)|,

|F(u, x)| \ bn2an− C
n−1

k=0
bk2ak

\ bn2an−bn \
1
2 bn2

an

=1
2 |bnfb, an (x)|.

Moreover, for x ¥Hn we have |F(u, x)| \ 1
2 bn2

an \ 2an > dn, which gives

d(|F(u, x)|) [
1
2nbn
.

Consequently, by Lemma 4

F
Hn
|F(u, x)| log+(|F(u, x)|) d(|F(u, x)|) dm(x)

[ F
Hn
2 |bnfb, an (x)| log+(2bn |fb, an (x)|)

1
2nbn

[ F
Hn
2 |bnfb, an (x)| log+(|fb, an (x)|

2)
1
2nbn

[
4
2n

F
I2
|fb, an (x)| log+(|fb, an (x)|) dm(x) [

8
2n
.
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Since for x ¥H−1 we have F(u, x)=0, then we get

F
I2
|F(u, x)| log+(|F(u, x)|) d(|F(u, x)|) dm(x)

[ C
n ¥ P

F
Hn
|F(u, x)| log+(|F(u, x)|) d(|F(u, x)|) dm(x) [ 16.

L

The following lemma can be found in the paper of Stein [Ste] or in the
book of Zygmund [Z, p. 213, I].

Lemma 14. Let E … I be a measurable set with positive measure. Then
there exists an N ¥ P and a constant A ¥ R so that

1 C
n \N
|cn |22

1
2

[ A ess supu ¥ E |F(u)|

for all

C
.

n=0
|cn |2 <., F(u)=C

.

n=0
cnrn(u)

Rademacher series.

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. Suppose on the contrary that there exists a mea-
surable function d: [0,+.)Q [0,+.), limtQ. d(t)=0 such as that for all
functions f ¥ L log+Ld(L) with the property

f̂(n1, n2)=0 (n1n2=0, n ¥ P2)

supn ¥ P
2 |dn(If)| < +. on a positive measure subset of I2. Consequently,

we have

sup
n ¥ P

2
|TnF(u, x))| < +.

on a positive measure subset of I2 with respect to each u ¥ I. Let m ¥ P2.
Since Tm is a linear operator then for all u ¥ I, x ¥ I2, and K ¥ P

Tm 1 C
K

n=0
rn(u) bnfb, an 2 (x)=C

K

n=0
rn(u) bn(Tmfb, an )(x).
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The operator Tm is of type (1, 1) (see, e.g., [SW]) which gives

C
.

n=0
||bn(Tmfb, an )||1 [ C C

.

n=0
||bnfb, an ||1

[ C C
.

n=0
bn2anm(fb, an ] 0)=C C

.

n=0
bn2an

1
2an(an/2+1)

[ C C
.

n=0

bn

an
<..

That is,

C
.

n=0
|bn(Tmfb, an )|

2 [ C
.

n=0
|bn(Tmfb, an )| <.

a.e. This implies that the function

g(u, x) :=C
.

n=0
rn(u) bn(Tmfb, an )(x)

exists and is finite for all u ¥ I and a.e. x. That is, for all K ¥ P

>TmF(u, .)− C
.

n=0
rn(u) bn(Tmfb, an )(.)>

1

[ >Tm 1 C
.

n=K+1
rn(u) bnfb, an )(.)− C

.

n=K+1
rn(u) bn(Tmfb, an )(.)>

1

[ C C
.

n=K+1
bn ||fb, an )(.)||1 [ C C

.

n=K+1

bn

an

tends to zero as K tends to infinity. That is,

TmF(u, x)=Tm 1 C
.

n=0
rn(u) bnfb, an 2 (x)=C

.

n=0
rn(u) bn(Tmfb, an )(x)

for all m ¥ P2, u ¥ I, and a.e. x ¥ I2. This gives

+. > sup
m ¥ P

2
|TmF(u, x)| \ : C

.

n=0
rn(u) bn(Tmfb, an )(x) :
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for all m ¥ P2 on a positive measure subset of I2 with respect to each u ¥ I.
Thus, there exists constant A > 0 such that for a positive measure of
(u, x) ¥ I×I2

sup
m ¥ P

2
|TmF(u, x)| < A.

Denote by this set of pairs (u, x) by E. Ex :={u ¥ I : (u, x) ¥ E}. For a
positive measure of x ¥ I2 we have that the measure of Ex is greater than
zero. By Lemma 14 it follows the existence of a constant Ax and Nx ¥ P
such that for all m ¥ P2

1 C
.

n=Nx

b2n |(Tmfb, an )(x)|
221/2 [ Ax ess supu ¥ Ex |TmF(u, x)| [ AxA.

The construction of Gb, a, p gives that m(lim supn Gb, an, p )=1. We give a
sketch of the proof of this. Take dn ¥ P such that m(I201k < dn W

k
b, an ) <

1
2n .

Thus, m(lim supn 1k \ dn W
k
b, an )=0. We also have m(lim supn W

0
b, an )=0.

That is, it can be supposed that an x ¥ I2 is not in 2 1 [ k < dnW
k
b, an for only a

finite numbers of n. Define the sequence of natural numbers (nj) in a way
that b1=b1(anj ) is greater than the greatest index which occurs related the
dyadic rectangles establishing Wkb, ani (1 [ k [ dni , i < j). By this we have
m(4 j

i=1 11 [ k < dni (W
k
b, ani

0Wkb, ani , p
)) [< j

i=1 m(11 [ k < dni (W
k
b, ani

0Wkb, ani , p
)) [

(1− 1
27
) j. This certainly implies that m(lim infn(I20Gb, an, p ))=0. n ¥ P for

which x ¥ Gb, an, p and consequently, by Lemma 5 there is an m ¥ P2 such
that |Tmfb, an )(x)| \ 2

−4. Since n \Nx can be supposed we have

bn2−4 [ 1 C
.

n=Nx

bn |(Tmfb, an )(x)|
221/2 [ AxA

for an infinite number of n ¥ P. This is a contradiction. That is, the proof
of Theorem 1 is complete. L
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